Type Invariants for Haskell

Tom Schrijvers*
Katholieke Universiteit Leuven, Belgium
tom.schrijvers@es.kuleuven.be

Louis-Julien Guillemette
Université de Montréal, Canada
guillelj@iro.umontreal.ca

Stefan Monnier
Université de Montréal, Canada
monnier@iro.umontreal.ca

Abstract
Multi-parameter type classes, functional dependencies, and recently GADTs and open type families open up opportunities to use complex type-level programming to let GHC’s type checker verify various properties of your programs. But type-level code is special in that its correctness is crucial to the safety of the program; so except in those cases simple enough for the type checker to see trivially that the code is correct (or harmless), type-level programs need to come with a specification of their properties together with their proof.

In this article, we propose an extension to Haskell that allows the specification of invariants for type classes and open type families, together with accompanying evidence that those invariants hold. To accommodate the open nature of type classes and type families, the evidence itself needs to be open and every subcase of the proof can be provided independently from the others.

Categories and Subject Descriptors D.3.2 [Programming Languages]: Language Classifications—Functional Languages; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—Type Structure

General Terms Algorithms, Languages

Keywords Haskell, type checking, type functions, type families

1. Introduction
Multi-parameter type classes (Wadler and Blott 1989; Peyton Jones et al. 1997; Duggan and Ophel 2002), functional dependencies (Jones 2000), and recently GADTs (Xi et al. 2003; Cheney and Hinze 2003; Peyton Jones et al. 2006) and open type families (Schrijvers et al. 2008) open up opportunities to use complex type-level programming to let GHC’s type checker verify various properties of your programs. But type-level code is special in that its correctness is crucial to the safety of the program; in surprisingly many cases the type checker’s limited reasoning power is actually sufficient to verify completely automatically that the type-level code is correct. But in the general case, the programmer needs to help the type checker by instructing it to exploit some particular properties of the types manipulated.

As it happens, GHC’s type system is already sufficiently powerful that in most if not all cases, the code can be rewritten in such a way that the type checker can check the correctness of the type annotations, even for fairly complex cases such as when proving that a compiler is type preserving (Guillemette and Monnier 2008). But such rewrites are unsatisfactory because they tend to either incur substantial run-time cost, or force wide-reaching changes which break the modularity of the code, or both.

So we basically want our type language to include a proof assistant. One alternative is to retrofit a system such as the Calculus of Inductive Constructions (Paulin-Mohring 1993) or Twelf (Pfenning and Schirmann 1999) into GHC’s type language, but since GHC’s type system is already fairly complex and powerful we decided instead to try to limit ourselves to a small extension of its type language, so as to make good use of the existing machinery. One of the side benefits is that the system arguably integrates better with the rest of Haskell and should hopefully be more palatable for Haskell coders.

Concretely, we propose an extension of GHC’s type system which allows the programmer to specify on the one hand some type invariants and on the other the corresponding proof. GHC already supports some forms of type invariants: a type class declaration can specify that all instances of this class should also be instances of some other classes, and for multi-parameter classes it can also specify functional dependencies between the parameters. Our type invariants subsume those two particular cases, except for the fact that they require more annotations: being more general, not only does the programmer need to provide explicit proofs of those invariants, but she additionally needs to explicitly specify when the invariant is used. To this end, each invariant provides a corresponding coercion function.

Another difference with the functional dependencies and the class context invariants, is that our type invariants can be specified separately from any class declaration, and can also apply to a combination of several classes or type families. This makes it possible to retroactively specify that all Integer instances are also instances of Additive, without having to change the Num class.

The specific contributions of this paper are:

• We clearly motivate the need for type invariants with examples (Section 2).
• We present type invariants for Haskell, and explain and illustrate the choices made in our approach (Section 3).
• The formalization of our approach (Section 4) respects as much as possible the open and modular nature of Haskell’s type classes and type families.
• We provide an external proof language that infers proof steps and greatly simplifies writing proofs (Section 5.1).
• As experimental evaluation, we have written and checked a number of invariants and their proofs (Section 5.2).

At the end of this paper, we discuss related work (Section 6) and conclude (Section 7).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright © 2009 ACM 978-1-60558-330-3/09/01. . . $5.00
2. Motivation and Examples

There are many examples where type families would be much more useful if they would support additional invariants beyond the basic axioms, i.e. the type family instances.

2.1 Indexed List Processing

Parity Indexing

Ki Yung Ahn proposed the following list GADT on the Haskell mailing list, which is parity-indexed, i.e. indexed by whether the length is odd or even:

```haskell
data Even
data Odd

data List a l where
  Nil :: List a Even
  Cons :: a -> List a l -> List a (Flip l)
```

For instance, Cons True Nil :: List Bool Odd and Cons False (Cons True Nil) :: List Bool Even. The type family Flip expresses what happens to the parity of the list length if we add an element:

- type family Flip l
- type instance Flip Even = Odd
- type instance Flip Odd = Even

While some functions using these lists are easy to type check, e.g.,

```haskell
headList :: List a l -> a
headList (Cons x xs) = x
```

it is unfortunately not possible to consider some other basic functions as well-typed:

```haskell
tailList :: List a l -> List a (Flip l)
tailList (Cons x xs) = xs
```

From the GADT pattern match we know that Flip k ~ l, where k is the parity of xa, and ~ is the intensional equality predicate. From the signature, we can also see that Flip l ~ k. Once we eliminate k from these equations, we end up with the need to prove the following constraint:

\[\forall l. \text{Flip} (\text{Flip } l) = l. \]

(1)

While we may think that this equation readily holds for any l, this is not so for 3 reasons: First, the \(\forall l \) quantifier really means any type, even if it is not in the domain of Flip, so the equation should hold also for Flip (Flip Char) = Char. Second, due to the openness of the type family Flip, one may add at any time an additional type instance, e.g.,

- type instance Flip Char = Even

such that Flip (Flip Char) = Odd and Equation (1) does not hold for Char. Finally, even if we resolve those problems, Haskell still provides no way to ask the type checker to verify and use this property.

There are various ways to work around the problem, such as cluttering either the type signature of tailList or the List constructors themselves with the required equality. Yet, this defers the equality to elsewhere in the program. It would be much neater if Equation (1) could simply be enforced on all instances of the type family, and that subsequently we could simply use Equation (1) wherever needed.

In (Ahn and Sheard 2008) Ki Yung Ahn decided to use an inelegant encoding of the indexing types that avoids type families.

Length Indexing

Length-indexed lists are a classical example:

```haskell
data Z
data S n

data List a l where
  Nil :: List a Z
  Cons :: a -> List a n -> List a (S n)
```

where we need a type family Add for expressing the signature of append:

```haskell
append :: List a k -> List a l -> List a (Add k l)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)
```

The same type family would also serve us for the signature of merge:

```haskell
merge :: List a k -> List a l -> List a (Add k l)
merge Nil ys = ys
merge (Cons x xs) ys = Cons x (merge ys xs)
```

In the second clause, the GADT pattern match exposes the equality k ~ S k', where k' is the length of xs. Now the type checker expects the type Add k' l for the expression (merge ys xs). However, it infers, based on the signature of merge, the type Add 1 k'. Hence, for this code to type check, commutativity of Add must hold:

\[\forall k. \forall l. \text{Add } k l = \text{Add } l k. \]

(2)

So again, we would want to be able to take advantage of invariants on type families.

Invariants as term-level functions

Without support for type invariants, it is still possible to implement the invariants at the term level, so as to make the above code examples type-check. We first need to reify the equality predicate at the term level using a GADT which witnesses the equivalence of two types, as well as reify the types (such as the length annotations) using singleton types:

```haskell
data Eqv s t where
  Eqv :: (s ~ t) => Eqv s t

data Nat n where
  Nz :: Nat Z
  Sn :: Nat s -> Nat (S s)
```

An invariant such as the commutativity of addition is then implemented as a function that analyzes the term-level representatives and constructs the proof:

```haskell
comm :: Nat i -> Nat j -> Eqv (Add i j) (Add j i)
comm Nz Nz = Eqv
comm Nz (Ns j) = case addZ j of Eqv -> Eqv
comm (Ns i) Nz = case addZ i of Eqv -> Eqv
comm (Ns i) (Ns j) =
  case comm i j of
    Eqv -> case (comm (Ns i) j, comm i (Ns j)) of
      (Eqv, Eqv) -> Eqv
```

where addZ similarly implements an auxiliary invariant stating that:

\[\forall n. \text{Add } n Z n. \]

(3)

To apply the invariant and have the merge function type-check, the length of the lists must be computed separately:

```haskell
merge (Cons x xs) ys =
  case comm (length xs) (length ys) of
    Eqv -> Cons x (merge ys xs)
```
Haskell with another type system feature.

are open. Secondly and more importantly, it requires extending a closed definition of kinds whereas type classes and type families are not. Instead of a datakind Nat, natural numbers are of kind *:

\[\text{Nat} = \mathbb{N} \]

To Haskell data type definitions, we could specify that type-level types are of the same kind *:

\[\Pi \forall x. \text{EMPTY} x \rightarrow \text{Int} \]

\[\forall x. \text{EMPTY} x \rightarrow \text{Bool} \]

In the absence of any instance, it is vacuously true that all instances of EMPTY satisfy the above two invariants. Yet, Haskell polymorphism is unconstrained, so the above \(\forall x \) does not restrict \(x \) to be a valid argument to EMPTY. So things can go very wrong if we do, as we can then derive \(\text{Int} \rightarrow \text{EMPTY} \rightarrow \text{Char} \rightarrow \text{Bool} \). Type soundness is at stake!

We need a mechanism to restrict the use of invariants to appropriate types only. Perhaps the most obvious approach is to use a richer kinding system than the one Haskell offers where all proper types are of the same kind \(\ast \). A richer kind system could allow the user to classify types into distinct kinds. For instance, analogous to Haskell data type definitions, we could specify that type-level natural numbers are of kind Nat:

\[\text{datakind \text{Nat}} = \mathbb{Z} \mid \mathbb{S} \text{Nat} \]

Then we could restrict the use of type variables in invariants to the appropriate kind:

\[\forall k: \text{Nat}. \forall l: \text{Nat}. \text{Add} k l \rightarrow \text{Add} l k \]

The above datakind has two disadvantages: Firstly, it provides a closed definition of kinds whereas type classes and type families are open. Secondly and more importantly, it requires extending Haskell with another type system feature.

Instead we use a solution that takes advantage of an existing Haskell feature for classifying types and that is open, namely type classes. Instead of a datakind Nat, we propose to use a type class Nat:

\[\text{class Nat n} \]

\[\text{instance Nat Z} \]

\[\text{instance Nat n} \Rightarrow \text{Nat} (\text{s } n) \]

Note that the type class does not need to have any methods; we are only interested in its type-level aspects. Using this type class, we can add the same style of constraint context to the invariant with which Haskell programmers are already familiar in function signatures.

\[\forall k. \forall l. (\text{Nat } k, \text{Nat } l) \Rightarrow \text{Add } k l \rightarrow \text{Add } l k \]

2.2 Type Preserving Compilation

In Guillaume and Monnier’s type preserving compiler (2008), an abstract syntax tree for System F is type-indexed with the source-level types before and after various program transformations, i.e., continuation-passing-style (CPS) transformation and type. One of the invariants that comes up in this context is the commutativity of CPS transformation and type substitution:

\[\forall t, x, s. \text{CPS} (\text{Subst } t x s) \rightarrow \text{Subst} (\text{CPS } t) \times (\text{CPS } s) \]

where CPS \(t \) reflects the type of an expression of source type \(t \) after CPS transformation, and \(\text{Subst } t x s \) is the type after substitution of the type variable \(x \) with type \(a \).

3. Outline of Our Approach

In this section, we outline our approach, what works and what doesn’t, and a number of complications that arise.

3.1 Domain Restriction

It is quite clear early on that invariants are not intended to be instantiated at just any types. For instance, we do not wish the invariant (2) to be instantiated to \(\text{Add } Z \text{ Char} \rightarrow \text{Add } \text{Char } Z \), as there is not even an instance of \(\text{Add } \) that tells us what to do with \(\text{Add } \text{Char } Z \).

An extreme case is a type family EMPTY without any instance at all. Since there is no instance, we could readily assume that the two following invariants hold:

\[\forall x. \text{EMPTY } x \rightarrow \text{Int} \]

\[\forall x. \text{EMPTY } x \rightarrow \text{Bool} \]

In return for this specification, we get a coercion function which has the signature:

\[\text{add_comm } :: (\text{Nat } x, \text{Nat } y) \Rightarrow \text{Add } x y \rightarrow \text{Add } y x \]

In this case, we see all the cases and will not loop indefinitely, we would need to rely on an external verifier to check the totality of that function.

3.2 Using Invariants

Due to their generality, invariants are unfortunately inappropriate for automatic use by the type checker algorithm, lest we give up on decidability of type checking. Firstly, they cannot be treated as type family instances, also called top-level equations in (Schrijvers et al. 2008), because the left-hand side is not necessarily in the proper constructor form to ensure either termination or confluence. Secondly, they cannot be treated as local equations, as provided in a function signature, because they contain schema (i.e. universally quantified) variables. In other words, and unsurprisingly, the completion algorithm of type families cannot be used to transform the invariants into a terminating and confluent rewrite system.

Because of the above issues, we propose that the programmer explicitly indicates when an invariant should be used. For this purpose the concrete syntax for invariant definitions introduces a name for the invariant. This then introduces a coercion function of the same name, which the programmer can use to apply the invariant where it is needed.

Example 1. The definition of the commutativity invariant in concrete syntax is:

\[\text{type invariant add_comm} = \]

\[(\text{Nat } x, \text{Nat } y) \Rightarrow \text{Add } x y \rightarrow \text{Add } y x \]

In return for this specification, we get a coercion function which has the signature:

\[\text{add_comm } :: (\text{Nat } x, \text{Nat } y) \rightarrow (\text{Add } x y \rightarrow \text{Add } y x \rightarrow a) \rightarrow a \]

It is used as follows in the merge example:

\[\text{merge } (\text{Cons } x \text{ xs}) \text{ ys} = \]

\[\text{Cons } x \text{ (merge } \text{ add_comm } \text{ merge } \text{ ys } \text{ xs}) \]

3.3 Proving Invariants

While type family instances are really the programmer-provided axioms of type families, invariants should be derivable from those axioms. An invariant which is not derivable is not a proper invariant, and may introduce unsoundness. Hence, to make sure an invariant actually holds, we require a proof.

Because of the proof obligation for invariants, we also call them lemmas throughout the rest of the paper. However, we must remember that invariants differ from lemmas on the account of openness. Whereas lemmas usually prove an existing property, our invariants also impose a property on future instances.

Case-based proofs Because of the open and modular nature of type classes and type families, we expect our proofs to be open and modular as well. Modularity of a proof means that it should be based on case analysis where each case can be written separately. Openness means that when new instances are added, then also new cases of the proof can be added. Of course, in a (closed) program, the type checker should verify whether all cases are covered.
As we have already introduced type classes to restrict the instantiation of type variables in invariants, we will also use the type class instances to determine our proof cases.

Example 2. For the commutativity invariant we have the following four proof cases based on the Cartesian product of the \(\text{Nat} \) type class instances:

- proofcase add_comm \(Z \) \(Z \) = ...
- proofcase add_comm \(Z \) \((S \ n) \) = ...
- proofcase add_comm \((S \ n) \) \(Z \) = ...
- proofcase add_comm \((S \ n) \) \((S \ m) \) = ...

Proof steps Each proof case must provide evidence that a particular instance of the lemma holds. The consequent of the lemma being a type equivalence, we need to prove the two types equal. We can write such proofs as a sequence of steps from one type to the other where each step is either justified by the use of an invariant, or by the traditional rules of type equivalence built into Haskell’s type system.

Example 3. The full first proof case of the commutativity axiom looks as follows:

- proofcase add_comm \(Z \) \(Z \) = \(\text{Add} \ Z \ Z \) \(~\text{Add} \ Z \ Z \).

This equation trivially holds by the usual type equivalence rules. The second proof case looks as follows:

- proofcase add_comm \(Z \) \((S \ m) \) = \(\text{Add} \ Z \ (S \ m) \) \(~\{\text{ind add_comm}\}\)
 \(\text{S (Add} \ Z \ (S \ m) \) \(~\text{Add} \ Z \ (S \ m) \ Z \)

The middle step is annotated with the type invariant it uses and the fact that it is an inductive step, while the first and last are left without such annotations since they only rely on the built-in type equivalence rules.

Example 4. Recall the parity invariant:

- type invariant parity \(p \) =
 Parity \(p \) \(\Rightarrow \) \(\text{Flip} \ (\text{Flip} \ p) \) \(\sim \) \(p \)

where

- class Parity \(p \)
- instance Parity \(\text{Odd} \)
- instance Parity \(\text{Even} \)

The proof cases are trivial since they do not require the use of any type invariant:

- proofcase parity \(\text{Odd} \) = \(\text{Flip} \ (\text{Flip} \ \text{Odd}) \) \(\sim \) \(\text{Odd} \)
- proofcase parity \(\text{Even} \) = \(\text{Flip} \ (\text{Flip} \ \text{Even}) \) \(\sim \) \(\text{Even} \)

We could trivially allow such proof cases to be elided altogether, of course.

Well-Founded Induction Many proofs over inductively defined types, such as the natural numbers, require induction themselves. E.g. in the proof cases of \(\text{add}_\text{comm} \) earlier, to show the commutativity invariant for the second case, \(Z \) and \(S \ n \), we rely on the invariant to hold for \(m \) and \(Z \). The main concern with inductive proofs, using the invariant directly or indirectly in the proof, is whether the induction is well-founded. In order for it to be well-founded, the use of an invariant in a proof case should be strictly smaller than the case itself, according to some norm.

Example 5. In the previous example, the following norm can be used to establish the well-foundedness of induction:

\[
\begin{align*}
|\text{add_comm} \ x \ y| &= |x| + |y| \\
|Z| &= 0 \\
|S \ x| &= 1 + |x| \\
\end{align*}
\]

So we have that:

\[
\begin{align*}
|\text{add_comm} \ (S \ n) \ Z| &= 1 + |n| \\
|\text{add_comm} \ Z \ (S \ m)| &= |n|
\end{align*}
\]

i.e., there is a proper decrease.

We propose to use the same norm for checking well-foundedness of invariants as is used to enforce termination of type families. While this choice is restrictive, Haskell programmers are already familiar with it from type families, and it has not posed any difficulties for the proofs we have constructed so far.

A final issue is how to identify recursive uses of lemmas, and hence when to enforce the well-foundedness criterion. First, notice that any invariant used in a proof may potentially refer back to the invariant being proved, so unless we know which invariants are mutually recursive and which are not, we have to conservatively consider that all uses of invariants may be inductive and should hence use strictly smaller arguments.

It turns out that enforcing in all cases that all invariants are applied to strictly smaller arguments has proven to be overly restrictive. Hence, we require the uses of invariants in proofs to be annotated with whether they are non-recursive or (potentially) recursive (using the \(\text{ind} \) annotation). In the latter case, the well-foundedness criterion is (conservatively) enforced. In the former case, we have to check instead whether the annotation is justified. This requires a global inspection of the lemma dependency graph of a program, i.e. a non-modular whole-program check, to ensure that this use of a lemma indeed is not part of any cycle.

3.4 Invariants with Class

While all the examples we have shown so far involve invariants about type families, we also want to be able to state invariants of type classes. Part of the reason for it being that we sometimes need them in order to prove type family invariants.

Example 6. The proof of the axiom shown in Sec. 2.2 for the type-preserving compiler involves among others the following auxiliary invariant:

\[
\forall k. \forall t. (\text{Nat} \ k, \ \text{Type} \ t) \Rightarrow U \ Z \ k \ t \sim t \quad (7)
\]

Here, \(U \) is a type family defined such that \(U \mathbf{i} \mathbf{k} \mathbf{t} \) increments all De Bruijn indices no smaller than \(k \) by \(i \) in type \(t \). The invariant expresses that if the increment is zero, then the update has no effect on the type.

This auxiliary invariant is instantiated in another proof to:

\[
\forall t. \text{Type} \ t \Rightarrow U \ Z \ Z \ (\text{CPS} \ t) \sim \text{CPS} \ t \quad (8)
\]

The use of this invariant is only justified if we can provide evidence for its context \((\text{Nat} \ Z, \ \text{Type} \ (\text{CPS} \ t)) \). While the former component is trivial to show, we can only show the latter with the help of an auxiliary type class invariant of the form:

\[
\text{type invariant type_cps} = \text{Type} \ t \Rightarrow \text{Type} \ (\text{CPS} \ t) \quad (9)
\]

Type class invariants are also useful on their own: for enforcing dependencies between type class instances.

Example 7. For instance, we can retroactively specify that all \(\text{Num} \) instances are also instances of some new type class \(\text{Additive} \), without having to change the \(\text{Num} \) class. This invariant is expressed as:

\[
\forall t. \text{Num} \ t \Rightarrow \text{Additive} \ t
\]
It turns out that type class invariants are similar to equational invariants and they require similar proof cases based on the different possible instantiations of the context. The proof steps little by little transform one context into the other, and as before each step is either justified by the built-in type class rules of Haskell, or by the use of a type invariant which then needs to be mentioned in an annotation.

Example 8. The proof cases of the above type_cp{\textit{s}} invariant look like:

```haskell
proofcase type\_cp{s} Int =
  Type Int => Type (CPS Int)
proofcase type\_cp{s} (a,b) =
  (Type (a,b)) =>
  (Type (CPS a), Type (CPS b)) =>
  Type (CPS (a,b))
```

There is one notable difference between those two kinds of invariants: equality predicates only exist at the level of types and are completely erased at run-time, whereas type classes are generally reified as dictionaries at run-time. This implies that for an equational invariant the value-level coercion function can be trivially implemented as a no-op; whereas for class invariants the value-level coercion function needs to build the corresponding run-time evidence (i.e. dictionary).

4. Formalization of Invariants

In this section, we formalize the type-level fragment of our Haskell language extension. The proof cases written in the source program do not easily lend themselves to reasoning about properties such as soundness proofs. So the the proof cases are here mapped into a lower-level representation called type equality coercions, which are taken from System \textit{F}_\text{C} (Sulzmann et al. 2007a), the intermediate language of GHC, with some simple extensions.

4.1 Coercions

Type equality coercions provide a coercion calculus with which we can build complex type equality proofs. For example, the proof that Add Z Z is equal to itself is represented by the coercion:

```haskell
refl (Add Z Z)
```

The proof that Flip (Flip Odd) = Odd is written as follows:

```haskell
(refl Flip) flip_odd o flip_even
```

The two Flip type family instances, denoted respectively flip_odd and flip_even, are used here as axioms.

```haskell
flip_odd says that Flip Odd " Even;
refl Flip says simply that Flip " Flip;
the application (refl Flip) flip_odd combines them to prove
that Flip (Flip Odd) " Flip Even;
finally o combines it transitively with flip_even to conclude that
Flip (Flip Odd) " Odd.
```

We have had to extend the coercion calculus of System \textit{F}_\text{C} with a few more coercions in order to be able to represent all our proofs.

4.1.1 Invariant Coercions

Proof steps that are justified by type invariants, such as inductive steps, use a new kind of coercion, similar to the axioms that refer to type family instances, but which instead refer to a type invariant. This is used for instance, in order to show the commutativity invariant for the second case, Z and \textit{S} m, where we rely on the invariant to hold for \textit{Z} and \textit{m}. With these so-called lemma coercions we can build both inductive proofs and proofs involving auxiliary lemmas.

Example 9. The above mentioned second proof case of the commutativity lemma is represented as follows:

```haskell
proofcase add\_comm Z (S m) =
  (add\_Z (S m)) o ((refl S) (sym (add\_Z m)))
  o ((refl S) (rec add\_comm Z m))
  o (sym (add\_S m Z))
```

Where (add_Z m) is the axiom stating that Add Z m = m;
the axiom add_S m Z states that Add (S m) Z = S (Add m Z);
and sym applies the commutativity of equality.

The first line corresponds to the first step in the proof which says that Add Z (S m) " S (Add Z m).

The second line instantiates recursively the invariant add_comm to get a proof that Add Z m ~ Add m Z which it then lifts to S (Add Z m) ~ S (Add m Z).

4.1.2 Context Proofs

A second complication of invariant coercions is posed by the invariant context. E.g. the proof above is actually incomplete: the use of the invariant \textit{rec add_comm Z m} is only valid if the invariant’s context can be provided, which in this case means we need to show both that the predicates Nat Z and Nat m are true. More generally, the use of an invariant coercion must be justified by a proof that the context is indeed satisfied. This requires a second coercion language, not for equality constraints, but for type class constraints.

This coercion language is also used for type class invariants.

This time we do not have any pre-existing adequate representation available in System \textit{F}_\text{C}: type class constraints are traditionally desugared to value-level dictionaries. The proof language is present only implicitly as value-level functions for dictionary construction and super class dictionary extraction. Hence, we propose a new coercion language modeled after these value-level functions. It contains additional functionality, such as instance context selectors which are usually not available for dictionaries (although such selectors have been proposed (Schrijvers and Sulzmann 2008)) but do make sense at the type level.\footnote{Note that it critically relies on the non-overlap of type class instances.}

Example 10. Further extending the above example, we must provide a proof of the context for the inductive argument add_comm Z m. In particular, we must show that both Nat Z and Nat m hold.

A proof of the former is env (Nat Z), which says the proof can be found in the proof case’s context. Indeed, Nat Z is a precondition of the proof case.

A proof of the latter is isel 1 (env (Nat (S m))). Here, we have an instance Nat (S \textit{N}) from the proof case’s context. From this we can show that \textit{N} \textit{m} holds based on the type class instance Nat \textit{m} => Nat (S \textit{m}). The proof constructor isel \textit{i} says to take the \textit{i}th type class constraint from the context of a particular instance. In this case \textit{i} = 1, and isel 1 yields the desired proof for Nat \textit{m}.

In summary, the complete coercion for the inductive use of add_comm, with the context proofs explicit is:

```haskell
rec (env Nat Z, isel 1 (env Nat (S m))) => add\_comm Z m
```

4.2 Program Syntax

Figure 1 summarizes our meta-variable naming conventions for the various syntactical categories. A type-level program, denoted by \textit{prog}(D TC, TC, \textit{F}, \textit{P}, \textit{f}, \textit{p}, \textit{P}, \textit{p'}, \textit{P'}, \textit{p' }), consists of:
\[s, t, u, v \text{ types} \]
\[\gamma \text{ coercions} \]
\[g \text{ equational axioms} \]
\[h \text{ equational invariants} \]
\[p \text{ type class invariants} \]
\[\delta \text{ type class evidence} \]
\[\theta \text{ type variable substitution} \]
\[I_{TC} \text{ type family instance} \]
\[D_{TC} \text{ type class declarations} \]
\[I_{TF} \text{ type class instance} \]
\[\pi_{TF} \text{ equational invariant proof case} \]
\[\pi_{TC} \text{ type class invariant proof case} \]

\[\text{Proof Syntax} \]

\[\gamma ::= \text{refl } t \mid \text{g } \bar{f} \mid \text{sym } \gamma \mid \gamma_1 \circ \gamma_2 \mid F \bar{f} \mid \gamma_1 \gamma_2 \mid \text{decomp}_1 \gamma \mid \text{norec } \delta \Rightarrow h \bar{f} \mid \text{rec } \delta \Rightarrow h \bar{f} \]
\[\delta ::= \text{env } C \mid \text{inst } \delta (C \bar{t}) \mid \text{sel } i \delta \mid \text{isel } i \delta \mid \text{co } (C \bar{t}) \gamma \mid \text{norec } \delta \Rightarrow p \bar{f} \mid \text{rec } \delta \Rightarrow p \bar{f} \]

4.3 Well-Typing

The main typing rule for type-level programs is:

\[\frac{\pi_{TC} \cup I_{TF} \cup \pi_{TF} \cup h \bar{f} \ni \text{prog}}{\text{prog}} \]

It checks the well-typedness of proof cases, and their complete coverage of invariants. The former well-typing rules are covered by Figures 3 and 4 for equational and type class proof cases respectively. A proof case is well-typed iff its proof term is well-typed and is a proof for the invariant instance that the proof case claims to cover. The proof terms for equational proof cases are the coercions of System FC, extended with invariant coercions (INVC0 and RecINVC0). The proof term language for type class invariants is new. Its primitives reflect the common value-level functions for dictionary construction and super class selectors used in the dictionary-passing implementation of type classes. Nonstandard are the (ISelf) rule reflects the instance selector function recently proposed in (Schrijvers and Sulzmann 2008), and the (CoTC) rule for coercing a type class constraint from applying to one type to another. Finally, the (INVC1) and (RecINVC1) cover the type class counterparts of invariant coercions.

4.4 Completeness Check

The coverage relation \(\subseteq \) checks whether one set of cases is covered by another set. It is used in LEMCO and LEMTC to check the completeness of the invariant proofs, i.e., whether all the required proof cases are supplied.

Definition 1. We define \(\subseteq \) as follows:

\[S_1 \subseteq S_2 \text{ def } \forall t \in S_1 \exists s \in S_2 \exists \theta. \theta(s) \equiv t \]

Note that this formulation allows for multiple required proof cases to be covered by one and the same supplied proof case. In this way, a combinatorial explosion of proof cases can often be avoided.

Example 11. One of the invariants in the type preserving compiler of (Guillemette and Monnier 2008), expresses that CPS transformation before and after type variable substitution yield the same result:

\[\text{invariant } k.s = (T \bar{p} s, \text{Tp } t, \text{Nat } i) \Rightarrow K \text{ (Subst } s \text{ t i) } \sim \text{ Subst } (K s) \text{ (K } t \text{ i) } \]

There are two instances of \(\text{Nat} \) and four of \(\text{Tp} \), and hence \(32 = 4 \times 4 \times 2 \) required proof cases. Luckily, we can get away with writing only four proof cases, only instantiating \(s \) to a more specialized type.

4.5 Well-Foundedness

In order to ensure the well-foundedness of (directly or mutually) inductive proofs, we require that (potentially) inductive uses of invariants in proofs are annotated as such, with the keyword rec. In order to keep the well-foundedness check simple and modular we require that each such invariant use is strictly smaller than the covered proof case it appears in according to a well-founded partial order denoted by \(\prec \) in rules (RecINVC0) and (RecINVC1).

Definition 2. The well-founded partial order \(\prec \) is defined as:

\[h_1 \bar{f} \prec h_2 \bar{f} \text{ def } \bar{f} \mid h_1 \bar{f} \ni \bar{f} \leq \bar{f} \wedge \text{vars}(\bar{f}) \subseteq \text{vars}(\bar{f}) \]

The syntax for proofs is listed in Figure 2. Its meaning is explained shortly.

For reasons of simplicity we have restricted ourselves to single-parameter type classes. We believe that it is straightforward to extend this work to multi-parameter type classes. We have also omitted type family declarations, because these do not contribute any useful information.

For the confluence and termination conditions on both type class and type family instances we refer to respectively (Sulzmann et al. 2007b) and (Schrijvers et al. 2008).
where the term norm $|·|$ is defined as:

$$|T| = \sum_i |t_i|$$

$$|F T| = 1 + |T|$$

$$|a| = 1$$

the function vars returns the multi-set (bag) of type variables:

$$\text{vars}(T) = \bigcup_i \text{vars}(t_i)$$

$$\text{vars}(t_1 t_2) = \text{vars}(t_1) \cup \text{vars}(t_2)$$

$$\text{vars}(F T) = \bigcup_i \text{vars}(t_i)$$

$$\text{vars}(a) = \{a\}$$

where $\cup \subseteq$ are the multi-set union and subset relations, i.e. taking multiplicity into account.

Observe that this definition of \prec considers induction on the combination of all invariant arguments.

Figure 3. Type Equation Proof System

<table>
<thead>
<tr>
<th>Rule</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ProofCo)</td>
<td>$h \overline{\pi} : (C u) \Rightarrow \pi \in \Pi \Rightarrow s \sim t \in \Gamma$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \cup {C [u/x]v}; h \overline{\pi} + \gamma : [u/x]s \sim [u/x]t$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \text{proofcase } h \overline{\pi} = \gamma : \emptyset$</td>
</tr>
<tr>
<td>(SymCo)</td>
<td>$\Gamma \vdash \gamma : s \sim t$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \text{sym } \gamma : t \sim s$</td>
</tr>
<tr>
<td>(TransCo)</td>
<td>$\Gamma \vdash \gamma_1 : t_1 \sim t_2$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \gamma_2 : t_2 \sim t_3$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \gamma_1 \circ \gamma_2 : t_1 \sim t_3$</td>
</tr>
<tr>
<td>(TFAppCo)</td>
<td>$\Gamma \vdash \gamma_1 : s_1 \sim t_1$</td>
</tr>
<tr>
<td></td>
<td>$i = 1, \ldots, n$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash F \gamma_1 \cdots \gamma_2 : F s_1 \cdots s_n \sim F t_1 \cdots t_n$</td>
</tr>
<tr>
<td>(AppCo)</td>
<td>$\Gamma \vdash \gamma_1 : f_1 \sim f_2$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \gamma_2 : s_1 \sim s_2$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \gamma_1 \gamma_2 : f_1 s_1 \sim f_2 s_2$</td>
</tr>
<tr>
<td>(DecompT)</td>
<td>$\Gamma \vdash \gamma : T s_1 \cdots s_n \sim T t_1 \cdots t_n$</td>
</tr>
<tr>
<td></td>
<td>$(i \in 1..n)$</td>
</tr>
<tr>
<td>(AxCo)</td>
<td>$g \overline{\pi} : s_1 \sim s_2 \in \Gamma$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash t : [t/x]s_1 \sim [t/x]s_2$</td>
</tr>
<tr>
<td>(InvCo)</td>
<td>$h \overline{\pi} : (C u) \Rightarrow s \sim t \in \Gamma$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \text{norec } \delta \Rightarrow h \overline{\pi} : [t/x]s \sim [t/x]t$</td>
</tr>
<tr>
<td>(RecInvCo)</td>
<td>$\Gamma ; h_{\overline{\pi}} \vdash \text{rec } \delta \Rightarrow h \overline{\pi} : [t/x]s \sim [t/x]t$</td>
</tr>
</tbody>
</table>

Figure 4. Type Class Proof System

<table>
<thead>
<tr>
<th>Rule</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(InstTC)</td>
<td>$\Gamma \vdash \delta : C \theta(t_i)$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \text{inst } \delta : C \theta(t)$</td>
</tr>
<tr>
<td>(SSeITC)</td>
<td>$\Gamma \vdash \delta : C \theta(a)$</td>
</tr>
<tr>
<td>(ISelTC)</td>
<td>$\Gamma \vdash \delta : C \theta(t)$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \text{isel } \delta : C \theta(t_i)$</td>
</tr>
<tr>
<td>(CoTC)</td>
<td>$\Gamma \vdash \gamma : t_1 \sim t_2$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \text{co } (C t_1) \gamma : C t_2$</td>
</tr>
<tr>
<td>(InvTC)</td>
<td>$\Gamma \vdash \delta : C \theta(t_i)$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash \text{norec } \delta \Rightarrow p \overline{\pi} : C [t/x]v$</td>
</tr>
<tr>
<td>(RecInvTC)</td>
<td>$\Gamma ; p_{\overline{\pi}} \vdash \text{rec } \delta \Rightarrow p \overline{\pi} : C [t/x]v$</td>
</tr>
</tbody>
</table>

where the term norm $|·|$ is defined as:

$$|T| = \sum_i |t_i|$$

$$|T| + |T| = 1$$

$$|F T| = 1 + |T|$$

$$|a| = 1$$

the function vars returns the multi-set (bag) of type variables:

$$\text{vars}(T) = \bigcup_i \text{vars}(t_i)$$

$$\text{vars}(t_1 t_2) = \text{vars}(t_1) \cup \text{vars}(t_2)$$

$$\text{vars}(F T) = \bigcup_i \text{vars}(t_i)$$

$$\text{vars}(a) = \{a\}$$

where $\bigcup \subseteq$ are the multi-set union and subset relations, i.e. taking multiplicity into account.

Observe that this definition of \prec considers induction on the combination of all invariant arguments.

Figure 5. Complete Proofs

<table>
<thead>
<tr>
<th>Rule</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LemCo)</td>
<td>${(C_1 u_1, \ldots, C_n u_n)</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash h \overline{\pi} : (C u) \Rightarrow s \sim t : \emptyset$</td>
</tr>
<tr>
<td>(LemTC)</td>
<td>${(C_1 u_1, \ldots, C_n u_n)</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash p \overline{\pi} : (C_1 u_1, \ldots, C_n u_n)</td>
</tr>
<tr>
<td></td>
<td>$\Gamma \vdash p \overline{\pi} : (C_1 u_1, \ldots, C_n u_n) \Rightarrow C t : \emptyset$</td>
</tr>
</tbody>
</table>
4.6 Type Soundness

The constructs we added to System F₀ preserve its soundness. More specifically, the progress lemma still holds thanks to the completeness check: whenever we need to evaluate a call to a coercion function, the progress lemma guarantees that the corresponding code does provide an applicable case. The type preservation lemma also still holds trivially. And the termination check is used to show that the coercion functions can indeed be implemented as no-ops.

5. Implementation and Evaluation

We have implemented a prototype well-typing checker in GHC-Haskell. This checker implements the rules formalized in Section 4. It is also able to reconstruct such proofs from the more compact and natural notation discussed used in the source language. We call the former the _internal proof language_, and the latter the _external proof language_.

5.1 The External Proof Language

A proof in the external proof language consists of a sequence of _proof steps_ \(\tau_i \sim \ldots \sim \tau_n \), and denotes a proof for the equation \(\tau_1 \sim \tau_n \). Our checker contains an inference that reconstructs the internal language proof from this external language proof. Essentially, it reconstructs the internal proof for two subsequent types \(\tau_i \sim \tau_{i+1} \) as a base case, and composes subsequent proofs \(\gamma_i \) and \(\gamma_{i+1} \) with the transitivity constructor \(\text{TransCO} \).

For the base case, a single external proof step \(\tau_i \sim \tau_{i+1} \), the reconstruction currently proceeds top-down and only considers a finite number of possibilities:

- If \(\tau_i \) and \(\tau_{i+1} \) are identical, use the \(\text{RefLC0} \) rule.
- Otherwise:
 - repeatedly decompose the type equality into multiple proof obligations using the \(\text{AppCO} \) and \(\text{TFAppCO} \) rules,
 - until the remaining proof obligations can be discharged with a single application of a rule from the set:
 \[
 \{ \text{RefLC0}, \text{SymCO}, \text{AXCO}, \text{InvCO}, \text{RecInvCO} \}
 \]
 whose (possible) subproofs all use the \(\text{RefLC0} \) rule only.

When using the \(\text{InvCO} \) or \(\text{RecInvCO} \) rule, also the context proof is reconstructed. For that purpose, all possible proofs with no more than three type class proof constructors are tried, with the exception of proofs involving the \(\text{CoTC} \) rule.

This search is only done for prototyping purposes. We are planning a full implementation which integrates with GHC, where we will be able to reuse the typing machinery which already computes such coercions for type families and computes comparable coercions for type classes, so we will not need to resort to such arbitrary search depth limits.

5.2 Evaluation

As preliminary evaluation of the expressivity of our invariant language we have encoded all the invariants of Section 2 and their proof cases. Some statistics of these invariants are recorded in the table below:

<table>
<thead>
<tr>
<th>main invariant</th>
<th>aux. invariants</th>
<th>cases</th>
<th>proof size</th>
<th>steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>parity</td>
<td>(0 + 0)</td>
<td>(2 + 0)</td>
<td>(10)</td>
<td>(4)</td>
</tr>
<tr>
<td>commutativity</td>
<td>(0 + 0)</td>
<td>(4 + 0)</td>
<td>(60)</td>
<td>(19)</td>
</tr>
<tr>
<td>CPS</td>
<td>(5 + 1)</td>
<td>(21 + 3)</td>
<td>(327)</td>
<td>(101)</td>
</tr>
</tbody>
</table>

For each row the table lists the number of auxiliary invariants (equational + type class) the number of proof cases (equational + type class), and total proof size. As measure for proof size we use the number of coercion and type class proof constructors used. The last column denotes the number of proof steps written in the high-level notation, as a comparison to the low-level proof constructors.

There are 18 proof constructors not covered in (+) because of current limitations of our naive proof search prototype. These comprise 11 constructors for the one type class invariant, and 7 constructors for the use of this type class invariant in the proof of an equational invariant.

The results indicate that our high-level notation is about three times more compact than the low-level one, which is a significant reduction in programmer effort. In addition to their compactness, we believe that high-level proofs can be written more quickly because the linear proof-style is much easier to grasp for the programmer.

6. Related Work

The Chameleon system allows programmers to extend the type checker with additional Constraint Handling Rules (CHRs) (Stuckey and Sulzmann 2005). These are useful for encoding additional properties, but have a more operational flavor, being left-to-right rewrite rules. The CHRs are more expressive than our invariants in that they allow existentially quantified type variables in the right-hand side. Yet, Chameleon treats the CHRs as axioms, and leaves the responsibility for soundness, completeness and termination to the programmer.

Invariants on type-level functions is something that can be done naturally in Coq (Paulin-Mohring 1993), although its type functions are closed. To go open world, one possibility may be to use the type class library of (Sozeau and Oury 2008), but this will not work for invariants that link two type classes (like our type-preservation invariant links the two type families CPS and \(\text{Subst} \)), since the invariant and its cases belong in neither type class.

The Twelf theorem prover (Pfenning and Schirmann 1999) has type families defined under an open world assumption, but these type families define relations rather than functions. Being dependently typed, it can be used to prove arbitrary invariants involving type families. The proofs take a logic programming flavor, unlike the equational proof syntax proposed here. Twelf provides coverage and termination checking, and support for proof search.

Omega (Sheard 2004) provide type-level functions similar to type families except that they are closed. One can reason about types at the term level using GADTs, but there are no user-defined type classes, type invariants, or other support for type-level programs.
7. Conclusion & Future Work

We have shown the limitations of Haskell’s current type language, comprising type classes and type families. To extend the expressivity, we have proposed type invariants, which respect the open nature of the aforementioned type system features. Our formalization takes care of soundness, completeness and well-foundedness for type invariants and their proofs.

There are many ways in which to improve our external proof language and the reconstruction of the internal proof, e.g. covering more substantial internal proofs, more efficient search, and interactive proving to name just a few. We plan to investigate which extensions are the most likely to alleviate the programmer’s burden.

Acknowledgments

We are grateful to Brigitte Pientka, Martin Sulzmann and the anonymous reviewers for their helpful comments. Part of this work was conducted while the first author was a visitor at Université de Montréal.

References

Simon Peyton Jones, Mark P. Jones, and Erik Meijer. Type classes: exploring the design space. In Haskell Workshop, Amsterdam, June 1997.

Tom Schrijvers and Martin Sulzmann. Unified Type Checking for Type Classes and Type Functions, 2008. Poster at the International Conference on Functional Programming (ICFP’08).

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In Symposium on Principles of Programming Languages, Austin, TX, January 1989.